Nature of the ortho Effect, V, ortho-Substituent Constants

Marvin Charton

Contribution from the Department of Chemistry, School of Engineering and Science, Pratt Institute, Brooklyn, New York 11205. Received May 27, 1969

Abstract: Thirty-two sets of ortho-substituent constants taken from the literature have been correlated with the equation $\sigma_{o,X} = \lambda \sigma_{I,X} + \delta \sigma_{R,X} + h$. The results show clearly that the *ortho*-substituent constants may be represented by the σ_1 and σ_R constants and are independent of steric effects. They show further that the composition of the ortho-electrical effect cannot be represented by a single set of substituent constants. The composition of a substituent constant is represented by the expression $\epsilon = \delta/\lambda$. Values for ϵ for the ortho-substituent constants studied range from 0.2 to 1.4. The statement often quoted in the literature to the effect that in the absence of proximity effects the ortho- and para-electrical effects are the same is examined and shown to be incorrect. In the general case in the absence of proximity effects the ortho- and para-electrical effects must differ.

The definition of *ortho*-substituent constants is a problem which has received considerable attention over the last 15 years. At the present time, 32 sets of ortho-substituent constants have been defined. Generally, although not in all cases, they have been defined by means of the Hammett equation using the values of the slope ρ and intercept h obtained from a correlation of data for meta- and para-substituted compounds. Two problems arise in connection with these ortho-substituent constants: (1) do they represent only electrical effects (are steric effects absent?) and (2) is it possible to represent the ortho-electrical effect by a single set, or at most a few sets, of ortho-substituent constants? Another question of great interest arises from the often quoted statement that in the absence of proximity effects, the ortho-electrical effect should be of the same composition as the para-electrical effect.^{1,2}

It is the purpose of this paper to attempt to answer these questions. In order to provide an answer to the first two questions, we have correlated all of the orthosubstituent constants which have been proposed so far with eq 1. This equation is based upon the Taft³ sep-

$$\sigma_{o,X} = \lambda \sigma_{I,X} + \delta \sigma_{R,X} + h \tag{1}$$

aration of substituent effects into localized and delocalized contributions. Successful correlation of the available ortho-substituent constants with eq 1 would be indicative of the absence of steric effects. If the ortho substituents are found to be a function solely of electrical effects, then a study of the variability of their composition defined as the ratio

$$\epsilon = \delta / \lambda \tag{2}$$

will provide an answer to the second question. All of the available σ_{ρ} constants are gathered in Table I. These constants have been correlated with eq 1 by means of multiple linear regression analysis. The σ_{T} constants required are generally taken from our compilation.⁴ The $\sigma_{\rm R}$ constants are obtained from the equation

$$\sigma_{\rm R} = \sigma_p - \sigma_{\rm I} \tag{3}$$

the necessary σ_p constants being taken from the collection of McDaniel and Brown.⁵

The value for hydrogen has been excluded from the correlations for all sets for which it was available, as the unsubstituted compound has often been found to deviate from the correlation line obtained for ortho-substituted compounds. Substituents which are capable of intramolecular hydrogen bonding and the *t*-butyl group and other exceptionally bulky substituents were also excluded from the correlations.

The amino and dimethylamino substituents were excluded from the correlations of $E_{1/2}$ values of 2-substituted phenyl tosylates. The dimethylamino values are believed to be incorrect in dimethylformamide and in dimethyl sulfoxide, and both amino and dimethylamino values deviate for the para-substituted phenyl tosylates in acetonitrile.6

Results

Results of the correlations are presented in Table II. Of the 32 sets of ortho-substituent constants, 11 gave excellent correlations, 5 gave very good, 2 gave good, 3 gave fair, and 2 gave poor correlations. Nine sets did not give significant correlations with eq 1, All nine sets had only four points as did also both sets which gave poor results. It seems likely that had data been available better results would have been obtained. It is particularly pertinent in this regard that all of the sets with eight or more points gave excellent correlations.

Discussion

Steric Effects. The results of the correlations seem to show clearly that in general the ortho-substituent constants can be accounted for solely by the σ_{I} and σ_{R} constants. We conclude that the *ortho* effect is a pure electrical effect for most substituents. Obviously, the

(6) V, M. Maremae, Org. Reactivity, 4, 573 (1967).

⁽¹⁾ L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill

⁽¹⁾ L. T. Hammett, "Physical Organic Chemistry," McGraw-Hill Book Co., Inc., New York, N. Y., 1940, p 206.
(2) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., John Wiley & Sons, Inc., New York, N. Y., 1956, p 593.
(3) R. W. Taft, Jr., J. Phys. Chem., 64, 1805 (1960).

⁽⁴⁾ M. Charton, J. Org. Chem., 29, 1222 (1964).
(5) D. H. McDaniel and H. C. Brown, *ibid.*, 23, 420 (1958).

Table I.	ortho-Substituent	Constants

1.	Ionization of 2-Su	bstituted benz	oic acids ^a	DI		60 II	<u> </u>		
X σ.	Me 0.29	Et 0.41	<i>i</i> -Pr 0.56	Pn 0.71	CN 1.06 ^b	CO ₂ H	CO_2^{-}	CONH ₂ 0 45 ^b	
X	NO ₂	NH ₃ +	OH	OMe	OEt	OPr	O-i-Pr	OPh	
σ_{c}	, 1.99 ^b	2.15	1.22	0.12	-0.01	-0.04	-0.04	0.67	
X σ.	-0.37 ^b	Г 0.93	1.28	Вr 1.35	1 1.34				
2.	Ionization of 2-sub	ostituted benzo	bic acids ^o						
X	F	Cl	Br	I	Me				
σ_{c}	0.53	0.83	0.91	0.84	-0.14				
3.	Ionization of 2-sub	stituted anilin	ium ions ^d	NUL	NTTT +	NO	011	014	
 σ.	. Me	0.05	<i>i-P</i> r	NH2 0	NH3 1 230	NO ₂ 1 72	-0.09	OMe	
X	OEt	F	Cl	Br	I	1.72	-0.09	0	
σ_{o}	0.02	0.47	0.67	0.71	0.70				
4.	Ionization of 2-sub	stituted pheno	olsª						
X	Me	Ph	OMe	CHO	<i>i</i> -Pr	t-Bu	CH₂OH	CONH ₂	
σ_0	-0.13		U Br	0.75	-0.23	-0.52°	0.04	0.72	
σα	0.54	0.68	0.70	0.63	1.24				
5	Ionization of 2-sub	stituted nhen	ols¢						
[.] x	Me	Et	Ph	CH₂OH	MeO	CHO	F	Cl	
σ_{o}	-0.13	-0.13	0	0.04	0.04	0.75	0.54	0.68	
X	Br	I	NO ₂	OH					
σο	, 0.70	0.05	1.40	0.04					
6. j	Ionization of 2-sub	stituted pheny	ylhydrazines ⁷	C	D -	COH	NO		
Λ σο	-0.153	-0.143	-0.097	0.398	0,406	1.275	1.363		
7	Ionization of 2-sub	etituted nhens	Intoniolic acids	a					
΄x	Cl	NO ₂	OMe	F	CF ₃				
σο	0.24	0.55	-0.13	0.13	0.21				
8.	Ionization of 2-sub	stituted pheny	propiolic acids	7					
X	Cl	NO ₂	F	CF₃					
σ_o	0.21	0.48	0.27	0.25					
9	Association of 2-su	bstituted benz	oic acids with d	liphenylguanidi	ine ^h				
X	NH₂ -0.15	Me -0.15	Cl 0.38	NO ₂					
00	0.15	-0.15	0.56	1.00					
10. V	Association of 2-s	ubstituted ben	zoic acids with	diphenyiguanio	line'	Me	NO		
σο	0	0.51	0.82	0.91	0.96	-0.32	2.18		
11	Detritiation of 2-s	ubstituted phe	envlacet vlenes i						
X	Br	Cl	Me	OMe					
σ_o	0.56	0.57	-0.14	-0.33					
12.	Reaction of 2-subs	stituted pheny	lpropiolic acids	with diphenyld	liazomethane ⁹				
X	Cl	NO₂	F	CF ₃					
σο	0.26	0.58	0.32	0.61					
13.	Reaction of 2-sub	stituted pheny	lpropiolic acids	with diphenyle	liazomethane ^o				
X σ.	0.27	NO₂ 0.57	0.27	0.35					
14		hudnohusia af	2	bul have see took					
14. X	Acid and alkaline MeO	EtO	2-substituted et	H nyi benzoates	F	Cl	Br	т	NO ₂
σο	-0.39	-0.35	-0.17	0	0.24	0.20	0.21	0.21	0.80
15	Acid and alkaline	hydrolysis of	2-substituted etl	hvlbenzoates ¹					
^x	Me	Et	F	Cl	Br	Ι			
σ_{o}	0.003	0.036	0.291	0.219	0.296	0.341			
16.	Alkaline hydrolysi	is of phenyl to	sylates ^m		_		_	_	
Х	Me		NO₂ 1 247	OMe	F		Br	I 0.545	NH₂ 0.074
σ0	-0.191	1.080	1.24/	-0.034	0.000	0.340	0.370	0.343	0.074
17. V	Alkaline fission of	2-substituted	benzoyloxyethy	ldimethylsulfin	ium iodides ⁿ				
	0.703	0.366	-0.054	-0.095					
18.	Vapor phase elimi	nation in ison	ropyl benzoates	0					
X	OMe	Me	Н	F	Cl	NO ₂			
σ_o	-0.53	-0.16	0	0.16	0.31	0. 9 4			
19.	Partial rate factors	s for electroph	ilic aromatic su	bstitution ^p	D	C	CO E+		
Χ σο	-0.276	-0.112	0.0408	0.101	0.258	0.263	0.437		
	··· -								

Journal of the American Chemical Society / 91:24 / November 19, 1969

Table I (Continued)

_									
20.	$E_{1/2}$ for 2-substitu	ted phenyl tos	sylates in dimet	hylformamide	2				
X	F 0.546	Cl 0.517	NH₂ 0.011 ³	MeO	Me 0.023	NMe ₂ 			
00	0.540	0.517	0.011	0.042	0.025	1.075			
21. X	$E_{1/2}$ for 2-substitut	ted phenyl tosy	ylates in dimeth	yl sulfoxide ^q	Me	NMe.			
σ_{0}	0.183	0.258	-0.047^{5}	-0.169	-0.029	-0.547^{b}			
	E. fan 2 auhatitu	ب مربع الموسية م		ianilo a					
^{22.} X	F	Cl	NH ₂	OMe	Me	NMe ₂			
σο	0.359	0.370	0.185%	-0.179	-0.190	0.1085			
23.	$E_{1/2}$ for 2-substitu	ted phenyl tos	vlates in pyridi	ne ^r					
X	Cl	F	NH ₂	NMe ₂	OMe	Me			
σ_{o}	1.184	1.000	0.136	0.259%	-0.221	-0.111			
24.	$E_{1/2}$ for 2-substitu	ted phenyl tos	ylates in benzoi	nitrile [®]					
Х	Cl	F	NH_2	NMe ₂	OMe	Me			
σ_0	0.350	0.242	0.051	0.133	-0.100	-0.158			
25.	$E_{1/2}$ for 2-substitu	ted phenyl tos	ylates in pyridi	ne-dimethylfo	rmamide [*]				
X	Cl	F		NMe_2	OMe	Me			
σο	0.085	0.333	-0.089	0.016	-0.228	-0.049			
26. V	$E_{1/4}$ for 2-substitu	ted phenylferr	ocenes ⁱ	тт	F		D.,	T	NO
Λ σ.	-0.39	-0.38	-0.03	л Ob	г 0 12	0.31	0.34	0.36	0.79
X	CO ₂ H	CO ₂ Me	CH ₂ OH	Ph	0.12	0101	0.01	0.00	0.17
σ_o	0.23	0.29	0.09	-0.03					
27.	Stretching frequer	ncies of 2-subs	tituted phenyl t	osylates ^u					
Х	NO_2	F	Ċl	OMe	Me	NH_2			
σ_o	0.80	0.23	0.23	-0.05	-0.19	-0.33			
28.	Stretching frequen	ncies of 2-hyd	roxy-2-substitut	ed benzanils ^v					
Х	Cl	F	н	Me	MeO				
σ_o	0.22	0.17	0 ^b	-0.14	-0.34				
29.	Stretching freque	ncies of 2-sub	stituted benzon	itriles ^w					
Х	\mathbf{NH}_2	OH	Me	Cl	NO ₂				
σ_{o}	-0.35	-0.2	-0.1	0.4	0.95				
30.	Hydroxyl chemica	l shifts of 2-su	ubstituted pheno	ols*					
X	F	Cl	Br	I	CN	CF ₃	Me	Et	Pr
σ_0	0.29 i-Pr	0.50	0.35 t-Bu	U.64 FtMerC	L. 18 BUCH.CH.	0.81 C.H.CH.		-0.15	-0.16
σο	-0.15	-0.18	-0.08	-0.15^{b}	-0.17	-0.07	0.62		
X	PhCH ₂	CH ₂ OH	Ph	CHO	Bz	CO ₂ Me	CO ₂ CH ₂ Ph		
σο	-0.08	-0.07	0.21	1.02	0.93	0.88	0.86%	~~).	
	C CONHPh	OH -0.41	OMe -0.37	-0.30	ACNH	NMe_2	SMe	SOMe	
0.		-0.41	-0.57	-0.50	-0.08	-0.50	0.21	0.92	
31. V	Hydroxyl chemica	I shifts of 2-su	ibstituted pheno	DIS [#] Pr	,_D+	Sec-Ru	f_P.1	BUCHCU	
σο	0.66	1.20	-0.03	-0.06	-0.03	-0.07	0	-0.08	
x	Ph	CHO	Ac	OMe			-		
σ_o	0.20	0.92	1.06	-0.23					
32.	Amine chemical sl	hifts of 2-subs	tituted anilines ²						
Х	Cl	Br	Me	OMe	OEt				
σο	0.40	0.40	-0.17	-0.20	-0.23				

^a G. B. Barlin and D. D. Perrin, Quart. Rev. (London), 20, 75 (1966). ^b Omitted from correlation. ^c A. Buckley, N. B. Chapman, and J. Shorter, J. Chem. Soc., B, 195 (1969). ^d J. Clark and D. D. Perrin, Quart. Rev. (London), 18, 295 (1964). ^e P. J. Pearce and R. O. O. Simikins, Can. J. Chem., 46, 241 (1968). ^f G. Westphal and H. H. Stroh, Z. Chem., 7, 192 (1967). ^e I. J. Solomon and R. Filler, J. Am. Chem. Soc., 85, 3492 (1963). ^b M. M. Davis and H. B. Hetzer, J. Res. Nat. Bur. Stand., 60, 569 (1958). ^f C. L. Liotta, Chem. Commun., 338 (1968). ^f C. Eaborn, G. A. Skinner, and D. R. M. Walton, J. Chem. Soc., 922 (1966). ^k See ref 2, p 619. ^f N. B. Chapman, J. Shorter, and J. H. P. Utley, J. Chem. Soc., 1291 (1963). ^m V. M. Maremae and J. R. Asenbush, Org. Reactivity, 2, 83 (1965); V. M. Maremae, *ibid.*, 4, 96 (1967). ⁿ P. Mamalis and H. N. Rydon, J. Chem. Soc., 77, 3037 (1955). ^e See ref 6. ^r V. M. Maremae, Org. Reactivity, 5, 943 (1968). ^f V. M. Maremae, *ibid.*, 5, 953 (1968). ^f W. F. Little, C. N. Reilley, J. D. Johnson, K. N. Lynn, and A. P. Sanders, J. Am. Chem. Soc., 86, 1376 (1964). ^w V. M. Maremae, Org. Reactivity, 4, 87 (1967). ^w A. W. Baker and A. T. Shulgin, J. Am. Chem. Soc., 91, 379 (1969). ^w H. W. Thompson and G. Steel, Trans. Faraday Soc., 52, 1451 (1956). ^w M. T. Tribble and J. G. Traynham, J. Am. Chem. Soc., 91, 379 (1969).

substituents which were excluded from the correlations due to bulk (*t*-butyl) or to intramolecular hydrogen bond formation (CO₂H, NH₃+, etc., in the case of the 2-substituted benzoic acids) exert steric effects. This is not the general case, however.

Composition of the ortho-Substituent Constants. Values of ϵ are reported in Table III. The values obtained range from 0.2 to 1.4 with 15 of the 20 reliable values lying between $\epsilon = 0.50$ and $\epsilon = 1.0$. The results show that although correlation can usually be obtained

Table II.	Results	of	Correlations	with	Equation	1

6652

			-							
Set	λ	δ	h	Ra	Fb	rc	S_{estd}^{d}	$s_{\lambda}{}^{d}$	S S ^d	Sh ^d
1	2.43	2.50	0.775	0.969	69.56	0.505	0.138	0.231	0.253	0.0786
2	2.33	1.89	0.201	0.995	94.21	0.612	0.0631	0.172	0.287	0.0632
3	1.59	1.07	0.265	0.951	42.27	0.124	0.180	0.227	0.212	0.108
4	1.96	0.906	-0.0423	0.981	126.7	0.049	0.108	0.129	0.167	0.0502
5	1.86	0.822	-0.152	0.994	398.2	0.016	0.0554	0.0712	0.0742	0.0297
6	1.29	1.83	0.356	0.967	29.05	0.327	0.202	0.384	0.341	0.184
7	1.13	0.310	-0.265	0.986	35.06	0.554	0.0574	0.221	0.114	0.120
8	0.943	0.137	-0.174	0.987	19.38	0.181	0.0332	0.173	0.0695	0.0938
9	1.34	0.399	-0.0308	0.987	18.16	0.522	0.155	0.314	0.288	0.166
10	2.83	2.15	-0.0524	0.998	573.8	0.173	0.0580	0.0882	0.133	0.0404
11	1.77	1.80	0.165	0.99996	5813.0	0.224	0.00752	0.0185	0.0260	0.00868
12	0.125	0.559	0.444	0.897	2.059	0.181	0.136	0.711	0.286	0.385
13	0.892	0.296	-0.0655	0.998	119.4	0.181	0.0159	0.0826	0.0332	0.0448
14	1.15	1.02	-0.0695	0.975	47.24	0.257	0.103	0.184	0.183	0.100
15	0.607	0.300	0.0858	0.948	13.23	0.687	0.0593	0.137	0.269	0.0477
16	1.68	0.413	-0.0286	0.960	29.38	0.501	0.170	0.298	0.246	0.162
17	0.870	0.677	0.0684	0.995	52.17	0.390	0.0638	0.128	0.155	0.0694
18	1.09	1.45	0.121	0.975	19.38	0.195	0.168	0.303	0.338	0.171
19	1.22	0.983	-0.119	0.952	19.28	0.304	0.0908	0.200	0.328	0.0637
20	1.38	0.951	0.170	0.966	6.966	0.531	0.141	0.369	0.512	0.163
21	0.846	0.876	0.103	0.983	14.13	0.531	0.0626	0.164	0.228	0.0724
22	1.41	0.874	-0.0376	0.986	17.42	0.531	0.0917	0.291	0.334	0.106
23	3.30	2.47	0.309	0.992	30.40	0.531	0.161	0.423	0.587	0.186
24	1.13	0.715	-0.0140	0.9999	2569.0	0.531	0.00605	0.0159	0.0220	0.00699
25	1.99	1.72	0.226	0.987	18.83	0.531	0.124	0.326	0.452	0.144
26	0.963	0.931	0.00193	0.928	28.00	0.032	0.135	0.195	0.178	0.0799
27	1.08	0.550	-0.0576	0. 99 1	80.21	0.405	0.0706	0.125	0.112	0.0718
28	1.13	1.14	0.0233	0.965	6.820	0.531	0.120	0.315	0.436	0.139
29	1.16	0.775	0.0579	0. 99 6	115.2	0.498	0.0700	0.139	0.113	0.0740
30	1.54	1.17	0.0725	0.912	61.84	0.050	0.207	0.189	0.163	0.0725
31	1.47	1.52	0.209	0.985	147.7	0.249	0.0978	0.123	0.169	0.0398
32	1.37	1.19	0.0422	0.997	178.8	0.170	0.0347	0.0843	0.0968	0.0389
	Set	n ^e	C.L. ¹	Set	n•	C.L.′	Set	ne	C	.L. ¹
	1	12	99.9	12	4	<90.0	23	4	<9	0.0
	2	5	97.5	13	4	90.0	24	4	9	7.5
	3	12	99.9	14	8	99.9	25	4	<9	0.0
	4	13	99.9	15	6	95.0	26	12	9	9.9
	5	12	99.9	16	8	99.5	27	6	9	9.5
	6	7	99.0	17	4	90.0	28	4	<9	0.0
	7	5	95.0	18	5	95.0	29	5	9	9.0
	8	4	<90.0	19	7	99.0	30	28	9	9.9
	9	4	<90.0	20	4	<90.0	31	12	9	9.9
	10	7	99.9	21	4	<90.0	32	5	9	9.0
	11	4	99 .0	22	4	<90 .0				

^a Multiple correlation coefficient. ^b F test for significance of regression. Partial correlation coefficient of σ_I on σ_R . ^d Standard errors of the estimate, λ , δ , h. • Number of points in the set. ^f Confidence level for correlation.

Table III. Composition of the ortho-Substituent Constants

Set	e	Set	e	Set	£
1	1.0	12		23	0.75ª
2	0.81	13	0.33	24	0.63
3	0.68	14	0.89	25	0.86ª
4	0.46	15	0.50	26	1.0
5	0.44	16	0.25	27	0.51
6	1.4	17	0.78	28	1 , Oª
7	0.27	18	1.3	29	0.67
8	0.15ª	19	0.81	30	0.76
9	0.30ª	20	0.69ª	31	1.0
10	0.76	21	1.0ª	32	0.87
11	1.0	22	0.62ª		

^a Correlation of this set was not significant. Value is approximate.

with σ_m ($\epsilon = 0.33$), σ_p^0 ($\epsilon = 0.67$), or σ_p ($\epsilon = 1.0$), no one set of ortho-substituent constants can be defined which can be used for most ortho-substituent effect data. In our opinion, the most useful approach to the problem of the correlation of data for ortho-substituted benzene sets lies in the use of the extended Hammett equation.

$$Q_{\rm X} = \alpha \sigma_{\rm I,X} + \beta \sigma_{\rm R,X} + h \tag{4}$$

Equation 4 has the advantage that the composition of the electrical effect is not specified, as it is in the simple Hammett equation by the choice of substituent constant.

The Relationship between the ortho- and para-Electrical Effects. Many authors have stated that in the absence of proximity effects the ortho-electrical effect ought to be the same as the para-electrical effect, that is, the ortho- and para-electrical effects should have the same magnitude and composition. The basis for this assumption seems to lie in the following statements by Hammett: "ortho substituents do not alter the entropy of activation of the aryl sulfuric acid hydrolysis and this reaction also shows no proximity effect. The effect of an ortho substituent is nearly the same as that of a para substituent, and the whole series of data closely parallels that obtained in the hydrolysis of cinnamic ester in which an ortho substituent is widely removed from the point of reaction," And "it is therefore very probable that the proximity effect acts through and is the direct result of the kinetic energy terms in the equilibrium and rate equations and that when, in special cases, these terms vanish for reaction in the ortho position the rate of reaction in that position is nearly identical with that in the para position." Statement 2 refers to electrophilic aromatic substitution. The concept of the sameness of the ortho- and para-electrical effects has been used by a number of authors^{7,8} to justify the sets of ortho-substituent constants which they have proposed. It is therefore of the greatest importance to determine whether this concept is in fact justified.

There are two possible contributions to the localized effect—they are the field and the inductive effects. Let us consider each of these contributions in turn.

Consider a reaction used to define σ_o constants and σ_p constants. The data employed to define the substituent constants may also be represented by the extended Hammett equation. Then

$$Q_o = \alpha_o \sigma_{\mathrm{I,X}} + \beta_o \sigma_{\mathrm{R,X}} + h \tag{5}$$

$$= \rho_o \lambda_o \sigma_{\mathrm{I,X}} + \rho_o \delta_o \sigma_{\mathrm{R,X}} + h \tag{6}$$

Then

$$\alpha_o = \rho_o \lambda_o, \qquad \beta_o = \rho_o \delta_o \qquad (7)$$

Similarly

$$\alpha_p = \rho_p \lambda_p, \qquad \beta_p = \rho_p \delta_p \tag{8}$$

Now it has been shown that for any set of compounds XGY where X is a variable substituent, Y is the reaction site, and G is a skeletal group to which Y and Y are bonded

$$\alpha_{\rm G} = \frac{\cos \theta_{\rm G} \phi}{r^2_{\rm G}} \tag{9}$$

where ϕ is given by

$$\phi = \frac{r^2 G_0}{\cos \theta_{G^0}} \alpha_{G^0} \tag{10}$$

 G^0 referring to some reference group G. The angle θ and the distance r are defined in A

r, / Y X______G

Thus

$$\alpha_o = \frac{\cos \theta_o}{r_o^2} \phi \quad \alpha_p = \frac{\cos \theta_p}{r_p^2} \phi \qquad (11)$$

Now examination of the structures of the ortho- and para-substituted benzenes shows clearly that

$$r_o \neq r_p, \quad \theta_o \neq \theta_p \tag{12}$$

Thus, except for the unusual case where by chance the differences in $\cos \theta$ compensate for the differences in r^2 , $\alpha_o \neq \alpha_p$ and therefore $\rho_o \lambda_o \neq \rho_p \lambda_p$. Now the definition of the σ_o constants requires that

$$\rho_o = \rho_p \tag{13}$$

Then

$$\lambda_o \neq \lambda_p \tag{14}$$

(7) See Table I, footnote i.

The inductive effect may be represented by the equation

$$\lambda = mq' \tag{15}$$

where q' is the charge induced by the substituent at the carbon to which the reaction site is bonded. This charge is given by the equation

$$q' = q \sum_{i} f^n \tag{16}$$

where q is the charge at the atom bearing the substituent X, f is the falloff factor, n is the number of carboncarbon bonds between substituent and reaction site, and i is the number of paths joining substituent and reaction site. Using a value for the falloff factor⁹ of 1/2.8 (0.357) we calculate

$$q_p' = 2f^3q = 0.089q \tag{17}$$

$$q_o' = (f + f^5)q = 0.363q \tag{18}$$

We conclude that according to the inductive effect

$$\lambda_o \neq \lambda_p \tag{14}$$

We may now turn to the delocalized effect. We have shown that

$$\beta = mq + c \tag{19}$$

where q is the π -electron density in the appropriate carbanion at the carbon bearing the reaction site. These values of q were calculated by the Dewar-Longuet-Higgins approximation method. Recently, Professor Paul Friedman¹⁰ has communicated to us the results of SCF calculations on the benzyl carbanion according to which the values of q_o and q_p are -0.09687and -0.144460. We conclude that

$$\beta_o \neq \beta_p \tag{20}$$

and therefore

$$\rho_o \delta_o \neq \rho_p \delta_p \tag{21}$$

From eq 13 it follows that

$$\delta_o \neq \delta_p \tag{22}$$

Thus in the absence of proximity effects the resonance effects at the *ortho* and *para* positions are decidedly different.

We conclude from this analysis of the ortho- and para-electrical effects that only in an exceptional case is the ortho-electrical effect likely to have the same composition as the para-electrical effect. In the general case, ortho- and para-electrical effects may be expected to differ in both magnitude and composition. In this regard it is of interest to note that of the 23 sets of ortho-

(9) Reference 2, p 592.

(10) Department of Chemistry, Pratt Institute, Brooklyn, N. Y. 11205.

⁽⁸⁾ See Table I, footnote x.

substituent constants which gave reliable correlations with eq 1, 17 have values of ϵ which are significantly different from the value for σ_p . Thus there is no special importance to be attached to those σ_{a} constants which do

happen to have the same composition as the σ_p constants.

We hope that we have now laid to rest the assumption of equality between the ortho- and para-electrical effects.

The Temperature Variation of the H_0 Acidity Function in Aqueous Sulfuric Acid Solution

C. D. Johnson, A. R. Katritzky, and S. A. Shapiro

Contribution from the School of Chemical Sciences, University of East Anglia, Norwich, England. Received April 7, 1969

Abstract; The variation of the H_0 acidity function, as defined by primary nitroaniline indicators, with temperature, has been examined by measurement of the scale at 25, 40, 60, 80, and 90°. Empirical equations correlating H_0 with temperature are deduced. The variation of pK_s values with temperature and the application of the scale to other measurements on acidity scales and acid-catalyzed reactions, at elevated temperatures, are discussed.

 \mathbf{M}_{in}^{any} acid-catalyzed reactions have been reported in concentrated solutions of aqueous sulfuric acid at elevated temperatures. The H_0 values of such solutions relevant to the interpretation of such reactions have usually been assumed to be those of the solutions at room temperature. In particular, this assumption has been very commonly employed in recent and extensive investigations into the mechanism of aromatic and heteroaromatic nitration and hydrogen exchange;¹⁻³ however, it has become increasingly apparent that this assumption is a gross one, and this prompted us to accumulate accurate information on the effect of temperature on the H_0 scale.

Similar previous investigations have concerned aqueous solutions of phosphoric and hydrochloric acid,⁴ and also sulfuric acid5 (the latter indicated diagrammatically in Figure 1). We believe that the values reported for the study of sulfuric acid may be in error for several reasons. The indicators used by these workers were 4-nitro-, 2-nitro-, 4-chloro-2-nitro-, 2,4-dichloro-6-nitro-, 2,4-dinitro-, 2-bromo-4,6-dinitro-, and 2,4,6-trinitroaniline. Overlap between the third and fourth of these indicators necessitated measuring $\log I$ (log [B]/[BH+]) values of up to -2.38; values of this magnitude are subject to large experimental uncertainty. Furthermore, there was no overlap at all between the fifth and sixth, and sixth and seventh of these indicators; the pK_a values of the latter two indicators were calculated by an extrapolation for which there is no theoretical justification.

The only other investigation of the temperature variation of an acidity function in aqueous sulfuric acid is that of $H_{\rm R}$ by Arnett and Bushick.⁶

(1) A. R. Katritzky, H. O. Tarhan, and S. Tarhan, J. Chem. Soc., B, in press, and references therein.

- (2) S. R. Hartshorn and J. H. Ridd, ibid., 1068 (1968), and references therein.
- (3) R. G. Coombes, R. B. Moodie, and K. Schofield, ibid., 52 (1969), and references therein.
- (4) A. I. Gel'bshtein, G. G. Shcheglova, and M. I. Temkin, Zh. Neorg. Khim., 1, 282 (1956).
 (5) A. I. Gel'bshtein, G. G. Shchleglova, and M. I. Temkin, *ibid.*, 1, 506 (1956).
- (6) E. M. Arnett and R. D. Bushick, J. Amer. Chem. Soc., 86, 1564
- (1964).

Experimental Section

Materials. Sulfuric and hydrochloric acids were AnalaR grade reagents. Furning sulfuric acid was prepared by distillation of sulfur trioxide into AnalaR grade sulfuric acid, using a process similar to that for the preparation of deuteriosulfuric acid.⁷ Water was deionized and further purified by distillation from potassium permanganate in glass apparatus.

The nitroaniline indicators used, (1) 4-nitro-, (2) 2-nitro-, (3) 4-chloro-2-nitro-, (4) 2,5-dichloro-4-nitro-, (5) 2-chloro-6-nitro-, (6) 2,6-dichloro-4-nitro-, (7) 2,4-dinitro-, (8) 2,6-dinitro-, (9) 2bromo-4,6-dinitro-, (10) 3-methyl-2,4,6-trinitro-, (11) 3-bromo-2,4,6trinitro-, and (12) 2,4,6-trinitroaniline, were obtained commercially or made by standard procedures.8 All were recrystallized several times from appropriate solvents and had accurate analyses and melting points which agreed with accepted literature values.

Preparation of Solutions. A stock acid solution was made by dilution of concentrated sulfuric acid with water, and estimated by titration with standard sodium hydroxide using screened methyl orange as indicator, or by adding an excess of potassium iodidepotassium iodate and titrating the liberated iodine against standard sodium thiosulfate using sodium starch glycollate as indicator. This stock acid solution was then diluted with water to give acids of the requisite strength; the procedure was carried out by weighing, and frequently checked by titration as above, agreement between the two results being well within experimental error. For more concentrated solutions, dilution of concentrated or fuming acid was employed.

The indicator stock solutions were prepared by addition of a weighed amount of the indicator to a volumetric flask and dissolving this in aqueous acid of sufficient strength to protonate it completely (to aid dissolution). A suitable volume of the stock solution was withdrawn by a micrometer syringe and added to standard acid (20 ml). The same operation was carried out using acids of the same strength, but without indicator present to yield a reference solution. All the above operations were checked by weighing.

Spectrophotometric Measurements. Two matched "UV grade" 1-cm cells (Unicam Instruments, Ltd., Cambridge, England) were filled with the indicator and reference solution, respectively, and closed with polyethylene stoppers (for measurements up to 60°) and with polypropylene stoppers (for higher temperatures). Absorbances were measured on a Unicam SP 500 spectrophotometer fitted with an electrically thermostated cell holder and controller (A. Adkins and Sons Ltd., Leicester, England). This cell holder was designed to take the two 1-cm cells, and was wired with 15 yards of Eureka 32 S. W. G. enamel-covered wire, half of it wound clockwise on one side of the block and half of it anticlockwise on

Journal of the American Chemical Society | 91:24 | November 19, 1969

⁽⁷⁾ A. P. Best and C. L. Wilson, J. Chem. Soc., 239 (1946).

⁽⁸⁾ For full details, see S. A. Shapiro, Ph.D. Thesis, University of East Anglia, 1969.